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A Collocation-H-'-Galerkin Method for 
Some Elliptic Equations 

By Mitsuhiro Nakao 

Abstract. A collocation-H1'-Galerkin method is defined for some elliptic boundary value 
problems on a rectangle. The method uses tensor products of discontinuous piecewise 
polynomial spaces and collocation based on Jacobi points with weight function x2(1 - x)2. 
Optimal order of L2 rates of convergence is established for the approximation solution. A 
numerical example which confirms these results is presented. 

1. Introduction. In this paper we define and analyze a collocation-H-'-Galerkin 
method, for some elliptic equations on a rectangular domain in two-dimensional 
Euclidean space. The method uses tensor products of discontinuous piecewise 
polynomial spaces as the trial functions family. 

The H-'-Galerkin method was introduced by Rachford and Wheeler [8] for the 
numerical solution of the two-point boundary value problem. Later Douglas, Dupont, 
Rachford and Wheeler [6] applied this scheme to the elliptic boundary value 
problem on a unit square, and derived optimal L2 and L? error estimates. The 
collocation-Galerkin method, which is a mixed scheme of a collocation method and 
an L2-Galerkin method, was first introduced by Diaz and in [2] he obtained optimal 
error estimates for the two-point boundary value problem. Also, in [3] Diaz applied 
the scheme to the Poisson equation and established optimal order L2 estimates. For 
elliptic equations, Wheeler [9] proposed a collocation-L2-Galerkin method with 
interior penalties and derived optimal L2 estimates. That method uses discontinuous 
trial function spaces, but not tensor products, similar to that of the present paper. 
On the collocation-H-'-Galerkin method, Dunn and Wheeler [5] obtained some 
optimal estimation results for the two-point boundary value problem. Diaz [4] 
extended those results to one space dimensional parabolic problems. Using similar 
ideas, Archer and Diaz described in [1] a discontinuous collocation-Galerkin scheme 
for a first order hyperbolic initial boundary value problem. On the other hand, 
Percell and Wheeler [7] reported about a collocation method using C' approximation 
spaces for elliptic equations. 

In the following sections, we define a collocation-H-'-Galerkin method for the 
boundary value problem: Lu Au + qu = f on a rectangular domain with u = 0 on 
the boundary, and establish optimal order L2 error estimates. Finally, we present 
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some results of computational experiments comparing this method with the colloca- 
tion-L2-Galerkin method in [3]. In the error analysis we reduce the problem to a 
one-dimensional case but do not intend to use the existing estimation results. That 
is, this paper is essentially self-contained. 

2. The Problem and Notations. Let E be a bounded open set in an n-dimensional 
Euclidean space (n = 1 or 2). For any integer s > 0, we denote the usual Sobolev 
space of order s by Hs(E), i.e., Hs(E) is the completion of C'(E) under the norm 

IIUIIHs(E) =( E IDauI L2(E)/ 
la| <S 

where a are multi-integers and IIUII22(E) = JEIUI2 dx. 
Consider the following elliptic boundary value problem on a rectangular domain 

(1) LuI\u + qu =f, inR, 
u = O, on8R, 

where R = (0, 1) x (0, 1) and a = a2/ax2 + a2/ay2. Assume that q E H2(R) and 
givenf E L2(R), (1) has a unique solution. 

Let 8: O = xo < xl < < Xn = , be a quasi-uniform partition of I= (0,1). 
Also let Ii = (xi-1, xi), hi = xiXi xi-1, h = max<i <N h, and Yk = Xk, O < k < N. 

For a positive integer r (> 2) and E c I, let Pr(E) denote the set of polynomials 
of degree at most r on E. Let 

6_Xr,(8) = { V: vI" E Pr(Ii), 1 < i < N), 

6Xr (s) = flr n Ck(I) n Ho(I), fork > 0, 

Zr() = {V: V EC 6Xr dJv (X i 0 0 < i < N, O < j < k), 

(X (6) = 61_r(8) ? 61r(8) 

6_X( =) =Gr+2(8) ? 6Xr+2(8) 

Usually, we shall suppress the dependency on the partition in these notations. The 
following partition into direct sum is immediately obtained by the fact that 6lXrL+2 - 

zr+2 e 6,X3 

6= 6X I 62 6-X3 -4 

where zr = Z+2 ? zr+2 6 = Zr+2 ?) GX3 <,3 = 6l ? Zr2 and 
>3~ ~~ 1g 

9 X I I6X 16X 

3. A Collocation-H-'-Galerkin Method. Let aj (1 < j < r - 1) be zeros of the 
Jacobi polynomial on I with weight function x2(1 - x)2. We adopt as collocation 
points the (r - 1)2 points (xij, Ykl), 1 < j, 1/ r - 1 on each subrectangle I, X Ik 
which are the following affine transformations of aj: 

xij =xi- 1 + hia> YkI = Yk- I + hkalJ9 1 < j, / < r -1. 

Now we define a collocation-H-'-Galerkin approximation to (1) by U E 9X 
satisfying: 

(2-i) AU( Xii Ykl) + q(xi1, YkI)U(xij, Yk,) f(X,1 9 Yk,), 

1 s< i, k <N, 1 j,l i r - 1, 
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(2-ii) ja2 U(xiv )v(q) dq + U(x1,i,,)v"(q) dq 

+ jq(xi1, ij)U(xij, q)v(?q) d?q = jf(xij, q)v(?1) d'q, 

1 < i < N, 1 < j < r -1, v E 63, 

(2-iii) | 2 U((' Ykl)v"(t) dt U4y{V()d 

+ fq( ykI)U(4, ykI)V( ( ) d ykf Yk)V(O) dt, 

I < k < Nr, I <, I < r -l,v 3, 

f1 fJ(t, 1q)(1v (t, q) + q(t, -q)v(t, q)) dfdq 
(2-iv) 

- | Jf(R r1) ) (v(, r1) dEdq v E U4. 

In order to make the error estimates easy, we represent (2) in a semidiscrete 
variational equation. First, as in [4], we define for a function p defined on I and 
V c zr+ 2 

r-1 (.I(> N 
(4,V)i hi (xi,)i]x,) and (,v)= (,v, i h 

2(l - 2 )2 1=1 j=l I j -j)i= 

where w. are postiive constants determined by 
r-lI 

fx2(1 - X)2p(X) dX = w jp(j), P C P2r-3(,) 
I j=1 

Note that if k v e P2r+ i(I,), then 

(3) (4, v)i = ]UP(x)v(x) dx. 

Furthermore, for 0 E 9T1r+2 

(4) (O 11K"'1) + (0", 2) ( - (k ')% 

where p = p1 + 02 such that e Zf+2 and f2 E 913. 
Next we define for the function 4' defined on R and w e 1 

(5) ((4, w)) = E { hihkIWIX 4(IYIc;w(ii,Yki)2 
i,k- Ij,l-l aj (-j l(- 

Now, using the following unique partition for v E 9, 

(6) v = vI + V2 + V3 + V4, Vm El mn 

a semidiscrete bilinear form f (., ) is defined as follows: 

(7) v(, V) = ((L4, v )) + f(LX4, V2)xdY + f(4, LXV3)ydX 

+frip, Lyv2)xdy + f(Ly4,, v3y dx + (14, Lv4), 
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where < , K , )y mean discrete bilinear forms defined earlier with respect to x 
and y, respectively, and (-, ) implies the L2 inner product in R. Furthermore, let 

2_ _ a 2~ 
Lx+ 4-++ q4 and L+2= +2 + . 

In particular, when L= A, we denote ,(-, .) by D(., ). Another bilinear form 
i v) is defined by 

i(, v) = (4,v1)) + JK4, v2)xdy + JKiP, v3),,dx + (4, V4). 

Then it can be easily seen that (2) is equivalent to 

(8) CMU v) = X(f, v), v E . 
Since IT and % are of the same dimension, existence of U satisfying (8) is equivalent 
to uniqueness, but the uniqueness will immediately follow from the theorems in the 
next section as it is required that h is sufficiently small except for L = A. 

We now provide some well-known inequalities for later use. When 4 E H2(JI), we 
have ([4] and [5]) 

(9) Ik(IILh(,2) c(h,/2IkXXIIL2(I ) + hT 3/2114L2(I,)) 

and 

(10) IkIIL<(I,) C c( hY/2IPxI0L2(I,) + h -/2|11|1L2(J )) 

Also, let v E Ps(II) ? P1(Ik) and p = I, X Ik. Then, by the quasi-uniformity as- 
sumption on the partition 8, we have the following inverse properties [7]: 

(I l) ||V||L??(P) < Ch |JV||L 2(P), 

and 

(12) lIIVVIIL2(P) , Ch1 IIVL2(p) 

Here and throughout this paper, we use C to denote a generic constant not 
necessarily the same in any two places. Also vm (1 < m < 4) denotes the mth 
component of v in (6) unless otherwise stated. 

4. Error Estimates. 
4.1. ForL= =. 
Let P: H3(I) -(R D1T be a projection determined by the realtions 

(g" - (Pg)",w1) = 0, WI Ezr 

(g- Pg,W')=0, kW2E9kR 

Since the definition of P is local, the following lemma is easily obtained from 
elementary approximation theory. 

LEMMA 1. For any s such that 3 A s A r + 1, if g E Hs(I), then there exists a 
constant C > 0, independent of h, such that 

IIg - PgIIHrn(l ) < Ch s||gJJHs( )' 0 < m < s. 
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Using this lemma for s = 3 and m = 0, by the triangle inequality we obtain 

COROLLARY 1. For any g E H3(I,), we have 

|lPgi1L2(I,) < C(Og|IL2(u,) + h3||g||H3(1,))- 

For u E H6(R), let Pyu be the above projection of u in the x direction for each 
fixed y. Similarly Pyu is defined. From the definition, we have P1,Py u = Py u e 6}. 

Now we have the following lemma. 

LEMMA 2. Let 3 < s < r + I and u e Hs+3(p)for p = I, X Ik. Then there exists a 
constant C > 0, independent of h, such that 

||u - PYPXuIIHm(P) < Ch s (IIUIIH,(P) + h3UIIuIH-+3(p)), 0 < m < s. 

Proof. First, by Lemma 1, Corollary 1 and the property of the operator P, we have 

IU - P)1P1UiiL2(P) < IIU - P-UIIL2(p) + jIPXU 
- 

PYP'uIjL2(P) 

K,Chslulwtp + Chs( aylu () 

= Chs IIuIIHs(P) + C( f | X (P))) 

a= aa (p)aflaL(p/2 
= ChS{ IIuIIS(P) + ( > 2 aa?au 2 1)2 

<~ ~ ~~= __S\IIUIIH3(P)+E(| a Ya || L2 ( ) ,BLol a x taaY a IlL 2 ( P) | 

< Chs(11u| w(P) + h3 I UI IHs+ 3(p)). 

This implies that the lemma is valid for m = 0. Next, for m > 1, choosing Q e 
Pr(Ii) ? Pr(Ik) appropriately to approximate u (e.g., the L2-projection of u), (12) and 
the above inequality yield 

||U 
- 

PyPJIHm(p) < |jU 
- QIIHm(P) + IIQ 

- 
PYPCUiiHm(P) 

< Chs-1|U||H"P) + Ch mjjQ - PYPXUIIL2(P) 

< C(h h JJuIIHs(p) + hmIIu - QIIL2(p) + h-mjju -PYPXUJJL2(P)) 

<s Chs-m(I|uIIHs(p) + h3IJuIIHs+3(P)), 

which proves the lemma. 
We now prove the following theorem which provides optimal order L2 error 

estimates for u - U when L = 1\. 

THEOREM 1. Let u and U be solutions to (1) and (2), respectively, for L = 1\. If 
u E Hr+4(R), then there exists a constant C > 0, independent of h, such that 

|U- UIIL2(R) < chr I(IIUIlHr?(R) + h3JJUJIHr?4(R)). 

Proof. Let W = PYPXu, = u - W and q = U - W. Then from (1) and (8), 

(13) D(q, v) = D(t, v), v e 't. 
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Let v e 6L satisfy vyy = -. Using (3) and (4) one can verify that 

(14) D(q, v) 1 IIVxxI2 2(R) + IIv,vxIIL2(R) = 2 

Next we estimate the right-hand side of (13). By the definition, 

D(&,v) = (K(Kx,vV)) + f(xxl v2)x dy +f , V3x),dX + V4xx) 

+ 
((Y.V' V1)) + fK<( V2y),)x dy + fKYY' V3)Y,dx + (4, V4Y,) 

= PV + V,, 

where vx and VV are the sums of first and last four terms, respectively. 
We now estimate each term in vx separately. Let (R = (p: p = I, X 'k' 1 i, k k 

N). 
First, for any Q E '%), we have 

(15) (X v)) x Ch2 E IIRxxIIL(p)IIVI IIL'(p) 

Ch2 (2 aJu 
- 

Q)L( 
+ (Q- W) 

)IIV 
p E aX L?(p) aX2 L'(p)II 

L-p 

If we select Q appropriately to approximate u (e.g., local L2-projection of u into D1), 
then, by simple calculations using (9) and (10), we obtain 

ax2 (u Q) || < Chr-2IIUIIHr+I(p) 

Hence, from (15), (11), (12) and Lemma 2, 

(16) K(Kx' v1)) 4 Ch2 E (hr2IIuIIHf+-(p) + h-3Q -WllIL2(p))h IIlxx.VIIL2(p) 

< Ch4 (hr2IIuIIfH-+(P) + h3u -w11L2(p)) IIvIxxlL2(P) 

c Chr+2 (IIuIIHff+ (R) + h3 || uJII| +4(R)) IIV 1XXyII L2(R) 

Next, by the definition of P and (3), for any map w: I(x) I(- ) 

(17) f(Kxx v2)x dY a2( - PxU), V2) dY 

+ X2( PxuPl,Pxu),v2)dy 

1+ aX2 ( PxU - PJ!,cU), V2 dxy 

H X2(Px PuPvPxu)V2dxdy 

fj(fj( a2 Pxu- Pv aa2PxU)(V2 - w,j,)dY) dx. 

Notice that we can choose w satisfying 

II(V2 - w1YY)(X, )IIL2(!) < ChjIV2(X, )IIH'(!) 
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Thus, by (17), (12) for its one-dimensional version and Corollary 1, we obtain 

(18) xx 

v2dy 

V c r+2| a 2 PXU(X ,1 
H(V2y)(X )||L2(!) 

dX 

1= N / 2? 1 a2 aua )IV2XXYIIL2(J Xl) 

=h I h -o 
ax2 2|L2( Xl) 1 1VI2xx1L 2Xl) 1 i=1 a=O a y L2(Jx!) 

N (r+1 aau 

i=1 a=0 Yc L2(J, xl) yLI 

Nh+ r? aU P IIV2xxy11L 2(!,X I) 
i=1 \a4.d aYa L 2(lXl) /8=0 ax'aYt L2(J XJ1), 

N 

< Chr+2 E (IIuIIwf+'(iuxi) + h3IIUIIw?+4(j!Xj))Iv2XXYIIL2(11 Xl) 
i=l 

4 chr+2(IuIllHr+l(R) + h3IIUIIHr+4(R))IIV2xxyIIL2(R) 

On the third term, we see that 

(t,V3xx y dx= f(u -yu, V3xx )dx + fPU - uPXPyU,l V3xx)y dx 

= f({u - Pyu, v3xx))y - (u - P5,u, V3xx)Y} dx 

+ (U - PyU V3xx)ydx. 

But, it is shown in [4, Lemma 4.1] that 
N 

|(U - PVU, V3xx)y - (U - 
PyU, V3xx)Y| '< Ch2 E -|U PyUI1Hl(!k)IIV3xxyIIL2(Jk)- 

k=1 

Also, using a similar estimation to that of the preceding term 

l(U 
- 

PyU, V3xx)yj < ChIu 
- 

PYUIIL2(j)IIV3xxyIIL2(!) 

Thus, by Lemma 1 we have 

(19) JK(t,V3xx ), dx Chr21U 11 r+ I(R) IIV3xxjIIL2(R). 

The last term is estimated by an argument similar to a part of the previous terms and 
Lemma 1. That is, 

(20) I(( v4XX)I = (u- PYU, V4X)| < Ch r+2IUllH+I(R)IV4xXy11L2(R) 

Now, note that 

(21) IIVmXxyIIL2(R) < CIIVXXYIIL2(R), 1 < m < 4. 

Therefore, from (16), (18), (19), (20) and (21), we have 

(22) I Chr+2(IIUIIHr+I(R) + h3IIuIIHr+4(R))jl VVXYIIL2(R). 
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Since vp is estimated in a similar manner, by (13) and (14) 

jIjVVxjIYIl? L Ch (IIuIIHl(R) + h3 IIuIIw4(R)). 

Thus by (12) 
(23) IIU- W1IL2(R) < Chr?l(IIulIHr+I(R) + h3IIUIJWy+4(R)). 

The proof of the theorem now follows from (23), Lemma 2 and the triangle 
inequality. 

It is easily seen that, from the above process of the proof and Lemma 2, Theorem 
1 is extended to the following form. 

COROLLARY 2. Let u and U be solutions to (1) and (2), respectively, for L = A. If 
u E Hr+4(p) for p E 6A, there exists a constant C > 0, independent of h, such that for 
O < m < r, 

( t ||u - U|| H"'(p) ) 1 Ch ( r H IIH'+(P) + h6IIuIIH|+4(P)) 

P C @ p'E 

4.2. ForL = A + q. 
We define a projection Y e 9T by 

(24) D(u-Y,v)=0, v e 6. 

Now, let = U - Y and D= u - Y. Then, from (8), 

(25) &(m,v) - (q,qv4) = (,v) - ('q,qv4), v E OZ. 
One can easily verify that if we take v E 9L satisfying vm, , = -s7, then 

j(1q, v) - (-q, qv4) - D (i, v)| <s Ch 2IVVX IIL(R)1 

Hence, if h is sufficiently small, by (14), there exists a constant C > 0, independent 
of h, such that 

(26) Ct1 vvX~,It L2(R) < Qq7, v) -(q, qv4) 

This relation will play an essential role in the proof of the following theorem. 

THEOREM 2. Let u and U be solutions to (1) and (2), respectively. If u E Hr+4(R), 
then, for h sufficiently small, there exists a constant C > 0, independent of h, such that 

IIu - UIIL2(R) < Ch rI(IIuIIHr+(R) + h3IIuIIH,+4(R)). 

Proof. From (24), we have 

(27) f(t'v) - (q,qv4) = ((q~T,vI)) +f(qT, V2)x dy 

+ f(q, V33 )dx + (u - U, qv4). 

First, by Sobolev's lemma, Corollary 2 and (11) 

| <qt,V I)) <Ch 2 E || L?(P)||V II||LX(P) 
p E=- 

W ChE ? 12(1j2p)u l 'VVIIuIILH2(p) 

A;chr+ 2 ( ||U||H/ L (R) + h3||a||Ht+4(R)) 11 Vx.Vl L2(R)- 
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Similarly, we have 

f(q, V2)x dY < Cf L hjj|(., Y)jjL%(I,)jjV (*, Y)j|Lj(I,) dy 

N 

< Cf _ h211(*, Y)IIH'n(IKV2XX( , Y)L2(1) dy 

c Chr+2( 
( IIUIIHfr(R) + h3It UIt wr-4(R))11V2XXY11L2(R) 

The third term is estimated in the same manner. 
In order to estimate the last term, let ( = u - U, and we consider the following 

boundary value problem. 

BF = qv4 in R, 
P = O onaR. 

Choosing 1 E 64 appropriately to approximate 1 (e.g. piecewise Hermite inter- 
polant), by (2-iv) and elliptic regularity, we have 

I((, qv4)j = L( L(1 - (D)) L (, L(1 - (D))P) 

~ C ~II~II2j(,))II4fII4(P) <C 
2 2 < C E 11t||L 2(p, h|||f4p 1111 C2ll(R)jjqv411H (R) 

Ch 2|1|VL2(R)|| 7V4XYIIL2(R). 

Thus, by (25), (26), (27) and (12) 

11I11L2(R) < C{ hr?+(IIUII||r+I(R) + h3||U || fr+4(R)) + h| u - UIIL2(R)) 

Therefore, if h is sufficiently small, by Theorem 1 and the triangle inequality we 
obtain the desired result. 

Remarks. 1. While Theorem 2 is valid for sufficiently small h, Theorem 1 is so for 
an arbitrary mesh size. 

2. For r > 5, it is possible that the norms on the right-hand side of all inequalities 
in the theorems can be weakened up to optimal size. 

5. A Numerical Example. We made a numerical experiment with our method for 
the following problem. 

(28) Au = -2v 2sin vx sin '7y, (x, y) E R, 

u=O, (x,y)e aR. 

The exact solution of the above is u(x, y) = sin rx sin ry. We used piecewise 
quadratic polynomials and uniform partitions. Table I shows the results of this 
experiment. Each item in Table I reads as follows: 

N: Number of partitions of I (h = 1/N). 
EBmesh: Maximum of the errors at all interior mesh points. 
Emidd; Maximum of the errors at the middle points of all subrectangles. 

E0fh: Maximum of the errors at the points of the form 
(x -0.75h,y1 - 0.75h), 1 < i,j < N. 
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Here, we adopted the maximum value of four different limits as the interior mesh 
point error for the discontinuity of the approximate solution. These results will be 
sufficient to confirm the cubic rates of convergence. 

TABLE I 

Errors for collocation-H-1-Galerkin method 

N Emesh EBmidd Eoth 

3 0.1211E - 1 0.1146E - 2 0.4716E - 2 
5 0.2327E - 2 0.1575E - 3 0.9639E - 3 
7 0.8373E - 3 0.4181E - 4 0.3501E - 3 

Now, in order to compare our method, we also computted numerical solutions by 
the collocation-L2-Galerkin method in [3] to (28) using the same degree (r = 2). The 
results are illustrated in Table II. 

TABLE II 

Errors for collocation-L2-Galerkin method 

N Emesh Emidd Eoth 

3 0.3286E - 3 0.5131E - 2 0.9266E - 2 
5 0.8165E - 4 0.6895E - 3 0.1979E - 2 
7 0.2521E - 4 0.1816E - 3 0.7154E - 3 

From these two tables it is seen that our method is inferior in the mesh points error. 
However, it seems to be a rather natural result because our trial functions were 
permitted discontinuity across the elements. On the other hand, it is clear that our 
method is superior for the error at the middle points. Similar phenomena were also 
observed at several other interior points in each subrectangle (see Eoth in these 
tables). 
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